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There has been intense recent interest in the synthesis and
reactivity of transition-metal alkylidene complexes (L,M=
CRR’),>* vinylidene complexes (L,M==C==CRR’)% and other
species containing metal—carbon multiple bonds.® We recently
described the synthesis and isolation of the pseudotetrahedral
electrophilic methylidene complex [(n-CsHs)Re(NO)(PPh;)(=
CH,)]*PF; and higher Re*=CHR homologues.***4 The latter
were found to exist in two photointerconvertible geometrically
isomeric forms and undergo stereospecific or highly stereoselective
nucleophilic attack.* Hence we were interested in determining
if similar phenomena could be observed in metallocumulene
systems, which would have the carbon = terminus more remote
from the metal site. In this communication, we describe (a) the
facile synthesis of chiral rhenium vinylidene and acetylide com-
plexes [(n-CsHs)Re(NO)(PPh,)(=C=CRR")]*X" (1) and (»-
C;Hs)Re(NO)(PPh,)(C=CR) (2) (R, R’ = H, CH,, C(Hj), (b)
the first observation of geometric isomerism in vinylidene com-
plexes, (c) the thermal and photochemical interconversion of these
isomers, (d) energy barriers associated with these isomerizations,
and (e) stereospecific reactions of acetylide complexes 2 that entail
transfer of the metal chirality through a C=C triple bond of
Sformal cylindrical symmetry!

Vinylidene complexes la—c¢ were prepared from the corre-
sponding rhenium acyls (3) by a modification of the method of
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Scheme I.  Syntheses and Interconversions of Rhenium
Vinylidene and Acetylide Complexes
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Hughes,*" as shown in Scheme 1.7 The key step is thought to
be fragmentation of the intermediate 4. The CF,;SO;H thus
liberated protonates unreacted 3, but this complication can be
easily circumvented.’

The parent vinylidene [(7-CsHs)Re(NO)(PPh,)(=C=
CH,)]*CF;SO;™ (1a) precipitated from CH,Cl,/hexane as a red
powder. It exhibited two =CH, 'H NMR resonances ((CDCl,)
8 5.40, 4.94, both d, Jiy_nye = 20 Hz)® which did not coalesce
(or undergo magnetization transfer)!! at 110 °C (CDCI,CDCl,,
200 MHz). This bounds the Re*==C=CH, rotational barrier,
AG*,, (110 °C), as >18.6 kcal/mol. Substituted vinylidenes
[(n-CsH;)Re(NO)(PPh,)(=C=CHCH,)]*CF,SO;" (1b) and
[(7-CsHs)Re(NO)(PPh,)(=C=CHCH;)]*CF;S0;" (1¢) were
isolated from CH,CI, as light brown and golden crystals, re-
spectively.!® Both 1b and 1¢ existed in two isomeric forms (k,
“kinetic™; t, “thermodynamic”; vide infra) which displayed distinct
CsH; and =CHR 'H NMR resonances. Equilibrium ratios were
(50 £ 2):(50 £ 2) (1bk/1bt) and (25 £ 2):(75 £ 2) (1ck/1ct).

Evidence was obtained that the two forms of 1b and 1c were
geometric isomers that differed in the orientation of the =CHR
group. First, irradiation of the (25 & 2):(75 % 2) 1ck/1ct mixture
(CD,Cl,, -78 °C, Hanovia 450-W lamp through Pyrex)*< gave
a clean (50 % 2):(50 £ 2) photostationary state. The sample was
allowed to return to thermal equilibrium in the dark, and additional
irradiation cycles were conducted without noticeable sample de-
terioration. Thus 1ck and 1ct can be photointerconverted
analogously to C=C and Re*==CHR geometric isomers.*4
Second, both 1bk/1bt and 1ck/1ct were smoothly deprotonated
by -BuOK* to common products, the orange crystalline acetylides

(7) Starting acyls 3 were prepared in 65-85% yields by reaction of (5-
CsH;)Re(NO)(PPh,)(CO,CH,)® with RMgX. The physical and chemical
properties of these complexes will be described in a subsequent full paper.
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mixture of 1 and the protonated acyl [(-CsHs)Re(NO)(PPh;) (=C(OH)-
CH,R)]*CF,SO;" (independently synthesized from the acyl and CF,SO;H).
These cationic products are not separable in our hands. Addition of +-BuO"K*
deprotonates each (respectively) to a 1:1 mixture of acetylide (2) and 3.
Subsequent addition of (CF,S0,),0 at ~78 °C converts this mixture entirely
to 1, since the acetylide now acts as the base for the CF,SO,H liberated.

(10) Full characterization of 1a—e and 2a—¢ (\H NMR, C NMR, IR, and
some mass spectral and microanalytical data) is given in the supplementary
material, Selected key features include: '*C NMR (ppm, CDCl,) la-e¢,
327-336 (C,), 113-140 (Cy), 2a-¢, 111-123 (Cg), 71-92 (C,); IR (cm™!,
CHCl,) la—e vnwo 1735-1750 (s), vec 1645-1665 (W), 28—C, vNeo
1655-1658 (s), vcamc 2020-2118 (W).
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Scheme II, Methylation of (n-C,H,)Re(NO)(PPh,)(C=CCH,) (2b)
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2b and 2¢ (Scheme I).!9 The parent acetylide, (-CsH;)Re-
(NO)(PPh,)(C=CH) (2a, orange powder) was likewise available
from the reaction of 1a with --BuO™K™*.10 Addition of CF,SO;H
to 2a—c re-formed the vinylidenes 1a—c (Scheme I). Thus the
C==C linkage in 2a—c, like that in ynamines,!? is nucleophilic.
Davison and Selegue have noted similar reactivity with (n-
CsH;)Fe(L),(C=CR) complexes.’*™

Although L, M=C=CHR complexes have been prepared
previously, geometric isomerism has not been heretofore noted.
We suggest that the two isomers of 1b (and 1¢) have their =CHR
planes essentially parallel to the Re—PPh; bond but differ as shown
in Newman projections (down the >C=C==Re* bond) I and IL

ON R Pph3 ON N Pph3

L £LN-Re-P=90%2° I

Our reasoning is as follows: (a) the X-ray structure of benzylidene
[(n-CsHs)Re(NO)(PPh;)(=CHC¢H;)]*PF; shows the =CHR
plane to be parallel to the Re—~NO bond;* (b) X-ray structures
of the M=(C),=CR, series (n-CsHs)Mn(CO),(=C(CH,),),
(7-CsHs)Mn(CO),(=C=C(CH,;),),” and (n-CsH5)Mn(CO),-
(=C=C==C(C4Hj;),)% show that neighboring homologues have
orthogonal carbon 7 termini; (c) since the (n-CsHs)Re(NO)(PPh;)
fragment HOMO is a d orbital whose mirror plane (bisecting all
four lobes) contains the Re—PPh, bond,* geometries I and II
maximize vinylidene 7 bonding.

While K, for 1bk = 1bt ~ | and K, for Ick = 1ct &~ 3, K,
for the geometric isomers of the homologous alkylidene complexes
[(n-CsHs)Re(NO) (PPh;)(=CHCH,)]*PF;" and [(n-CsHs)Re-
(NO)(PPh;)(=CHC4H;)]*PF, are ca. 10 and 299, respec-
tively.**¢ This indicates that the vinylidene =CHR moiety is
better insulated from the steric environment of the metal than
the alkylidene =CHR moiety. Hence the 8 carbons of 1 and 2
were considered to be unlikely sites for stereospecific reactions.
Surprisingly, the following results show this presumption to be
incorrect.

Methyl acetylide 2b was treated with CH,SOsF in CD,Cl, at
-78 °C (Scheme II). 'H NMR monitoring showed that di-
methylvinylidene [(n-CsHs)Re(NO)(PPh;)(=C=C(CH,),)]*-
SO;F~ (1d) formed cleanly upon warming to 0 °C. Complex 1d
exhibited two CH, 'H NMR resonances (8 1.96, 1.24) and was
isolated as yellow crystals from CH,Cl,/ether.!? Similar reaction
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Figure 1. Suggested means of chirality transfer from rhenium.

of 2b with CD;SO;F gave 1d-ds, but the expected § 1.96 'H NMR
resonance was absent (detection limit 1%). Thus only one geo-
metric isomer, 1d-ds-k, formed initially. As the sample was
warmed to >0 °C, the missing resonance appeared as the § 1.24
resonance diminished. After 18 h at 25 °C, both CH; resonances
(and hence both 1d-d; isomers) were present in equal amounts
(Scheme II).

The generality of this phenomenon was probed with additional
acetylides and electrophiles. A similar reaction of 2b with
CF;SO;H at =78 °C gave a (90 & 2):(10 £ 2) 1bk/1bt mixture.
Equitibration to a (50 £ 2):(50 &+ 2) thermodynamic mixture
occurred over 12 h at 25 °C. Reaction of phenyl acetylide 2¢ with
CF;SO;H at -78 °C gave a 299:1 1ck/1ct mixture. Equilibration
toa (25 £ 2):(75 £ 2) thermodynamic mixture required ca. 3
h at 25 °C. Reaction of 2¢ with CH;SO,F at 0 °C gave a single
isomer of the disubstituted vinylidene [(n-CsHs)Re(NO)-
(PPh;)(=C=C(CH;)C4H;)]*SO,F~ (1ek).!® The rate of
equilibration of 1ek to a (25 £ 2):(75 £ 2) 1ek/let mixture was
measured 30, 35, 40, and 45 °C and gave the activation parameters
AH*, = 15.7 % 1.7 kcal/mol and AS*, = 9.8 £ 5.5 eu.)?

Thus, of the two possible orientations about the allene-like axis
of chirality in 1b—e, only one is (initially) obtained when elec-
trophiles attack 2. In essence, the rhenium chirality is transmitted
through the formally cylindrically symmetrical bond. Such ste-
reospecificity is to our knowledge unprecedented.

Our tentative interpretation of the origin of this asymmetric
induction is shown schematically in Figure 1. Of the four p lobes
available on the acetylide terminus for electrophile attack, two
(c, d) are orthogonal to the d donor orbital on rhenium and thus
by analogy to structurally constrained enamines!* should be un-
reactive. Of the remaining lobes a and b, we favor electrophile
attack upon a since this would be anti to the bulky PPh, ligand.
An important expected (and observed) consequence is that
whenever the entering electrophile is smaller than the acetylide
R group, the vinylidene geometric isomer formed kinetically should
not be the thermodynamically favored one. On this basis, we
assign (1) 1bk and 1ck the structure I (R = CH;,C4Hs), (2) 1bt
and 1ct the structure II, (3) 1d-d, isomers the structures shown
in Scheme II, and (4) 1ek a structure with CH, anti and C4H;
syn to the PPh,.

The closest analogy of which we are aware for this type of
asymmetric induction would be the reaction of chiral R—C=
C—CHRX* systems with aluminum hydrides to give (via a net
Sn2’ displacement) chiral allenes.!* However, vinylalane in-
termediates have been implicated in this transformation; fur-
thermore, it entails only the conversion of a chiral center to a chiral
axis, rather than the creation of a new element of chirality as in

(13) No coalescence was observed up to 110 °C in the 200-MHz 'H NMR
spectra of 1bk/1bt, 1ck/1ct, and 1d; this bounds AG*,, (110 °C) for these
compounds as 218 kcal/mol. Data on homologous alkylidene complexes
include AG* %(27 °C) >15 kcal/mol for [(n-CsHs)Re(NO)(PPh,)(=
CH;)]*PF{’L- and AH* , = 20.9 kcal/mol and AS*, = -3.8 eu for sc-
[(n-CsHs)Re(NO)(PPh;) (=CHC,H;)] *PF" %

(14) Cook, A. G., Ed. “Enamines”; Marcel Dekker: New York, 1969; see
p 41 and pp 49-50.

(15) Claesson, A.; Olsson, L.-I. J. Am. Chem. Soc. 1979, 101, 7302. (b)
Borden, W. T.; Corey, E. J. Tetrahedron Lett. 1969, 313.



4950 J. Am. Chem. Soc. 1982, 104, 4950-4951

Scheme II. In summary, this study has provided another striking
example of the unique capabilities of chiral transition-metal centers
in stoichiometric asymmetric synthesis and foreshadows a much
broader range of reactions that will be possible with (3-CsHj)-
Re(NO)(PPh,) systems.
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The addition of element-to-hydrogen bonds to alkenes is a
fundamental step in many catalytic and stoichiometric trans-
formations.! The synthetic utility of this general reaction type
is exemplified by the hydroboration? and hydrozirconation® re-
actions. Here we report that the bridging iron-methylidyne
complex [cis-Cp,Fe,(CO),(u-CO)(u-CH)]*PF,~ (1)* (Cp = -
CsH;) reacts with a variety of alkenes to add the methylidyne
carbon-hydrogen bond across the carbon—carbon double bond.
This “hydrocarbation” reaction provides an unprecedented method
for carbon—carbon bond formation. Metal-bound methylidyne
ligands have been proposed as intermediates in the catalytic re-
duction of CO,’ and addition of a methylidyne C-H bond to an
alkene is a potential homologation step in these processes.

The cationic iron—methylidyne complex 1 can be viewed as a
relatively stable secondary carbonium ion stabilized by electron
donation from the two iron centers.® Complex 1 is synthesized

t National Science Foundation Postdoctoral Fellow.

(1) See for example: (a) Parshall, G. W. “Homogeneous Catalysis”; Wiley:
New York, 1980; Chapters 2-4. (b) Collman, J. P.; Hegedus, L. S. “Principles
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from the bridging methylene complex Cp,Fe,(CO),(u-CO)(u-
CH,)*7 by hydride abstraction with (C¢Hs);C*PF, and is con-
sequently a more stable cation than the triphenylmethyl cation.
In spite of its relative thermodynamic stability, the methylidyne
complex 1 is a very reactive electrophile and forms stable adducts
with N(CH,),, (CH3),CO", and CO by addition of the nucleophile
to the methylidyne carbon™2 as well as reacting with alkenes as
described here.

When a slurry of the red iron-methylidyne complex 1 in CH,Cl,
was stirred under an ethylene atmosphere and warmed from -78
°C to room temperature, a maroon crystalline product was formed.
Evaporation of solvent in vacuo followed by recrystallization of
the product from acetone—ether gave the propylidyne complex
[cis-Cp,Fey(CO),(u-CO) (u-CCH,CH;)]*PFy (2) in 65% yield.*10
The spectroscopic properties of 2 are comparable to those of related
cationic iron carbyne complexes which were first prepared by
Nitay et al.®

The reaction of 1 with excess ethylene in CD,Cl, at —20 °C
was monitored by 'H NMR spectroscopy. The time for 50%
conversion of 1 to 2 was approximately 15 min at 20 °C, and
no detectable intermediates or side reactions were noted. Fur-
thermore, we have never observed further reaction of alkenes with
the alkylidyne hydrocarbation products (vide infra).!! Thus, the
methylidyne C—H bond of 1 has unique reactivity not possessed
by the C—CH,CHj, bond of 2; similar observations have been made
in the cases of hydroboration and hydrozirconation.??

The reaction of 1 with CD,=CD, (>95% deuterated) in
CD,Cl, gives 2-d, in which >90% of the proton originally bonded
to the methylidyne carbon of 1 has been delivered to the methyl
group of 2-d, as determined by 'H NMR spectroscopy.!? This
establishes that 2 is formed by 1,2-addition of carbon and hydrogen
to ethylene and rules out the possibility that 2 arises by electrophilic
addition of 1 to ethylene followed by two sequential 1,2 hydrogen
shifts in an intermediate such as I.
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